Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Cloud contamination severely degrades the usability of remote sensing imagery and poses a fundamental challenge for downstream Earth observation tasks. Recently, diffusion-based models have emerged as a dominant paradigm for remote sensing cloud removal due to their strong generative capability and stable optimization. However, existing diffusion-based approaches often suffer from limited sampling efficiency and insufficient exploitation of structural and temporal priors in multi-temporal remote sensing scenarios. In this work, we propose SADER, a structure-aware diffusion framework for multi-temporal remote sensing cloud removal. SADER first develops a scalable Multi-Temporal Conditional Diffusion Network (MTCDN) to fully capture multi-temporal and multimodal correlations via temporal fusion and hybrid attention. Then, a cloud-aware attention loss is introduced to emphasize cloud-dominated regions by accounting for cloud thickness and brightness discrepancies. In addition, a deterministic resampling strategy is designed for continuous diffusion models to iteratively refine samples under fixed sampling steps by replacing outliers through guided correction. Extensive experiments on multiple multi-temporal datasets demonstrate that SADER consistently outperforms state-of-the-art cloud removal methods across all evaluation metrics. The code of SADER is publicly available at https://github.com/zyfzs0/SADER.
Abstract:Recently, the integration of unmanned aerial vehicle (UAV) and visible light communication (VLC) technologies has emerged as a promising solution to offer flexible communication and efficient lighting. This letter investigates the three-dimensional trajectory planning in a UAV-assisted VLC system, where a UAV is dispatched to collect data from ground users (GUs). The core objective is to develop a trajectory planning framework that minimizes UAV flight distance, which is equivalent to maximizing the data collection efficiency. This issue is formulated as a challenging mixed-integer non-convex optimization problem. To tackle it, we first derive a closed-form optimal flight altitude under specific VLC channel gain threshold. Subsequently, we optimize the UAV horizontal trajectory by integrating a novel pheromone-driven reward mechanism with the twin delayed deep deterministic policy gradient algorithm, which enables adaptive UAV motion strategy in complex environments. Simulation results validate that the derived optimal altitude effectively reduces the flight distance by up to 35% compared to baseline methods. Additionally, the proposed reward mechanism significantly shortens the convergence steps by approximately 50%, demonstrating notable efficiency gains in the context of UAV-assisted VLC data collection.
Abstract:We introduce PaddleOCR-VL-1.5, an upgraded model achieving a new state-of-the-art (SOTA) accuracy of 94.5% on OmniDocBench v1.5. To rigorously evaluate robustness against real-world physical distortions, including scanning, skew, warping, screen-photography, and illumination, we propose the Real5-OmniDocBench benchmark. Experimental results demonstrate that this enhanced model attains SOTA performance on the newly curated benchmark. Furthermore, we extend the model's capabilities by incorporating seal recognition and text spotting tasks, while remaining a 0.9B ultra-compact VLM with high efficiency. Code: https://github.com/PaddlePaddle/PaddleOCR
Abstract:Safety-aligned LLMs suffer from two failure modes: jailbreak (answering harmful inputs) and over-refusal (declining benign queries). Existing vector steering methods adjust the magnitude of answer vectors, but this creates a fundamental trade-off -- reducing jailbreak increases over-refusal and vice versa. We identify the root cause: LLMs encode the decision to answer (answer vector $v_a$) and the judgment of input safety (benign vector $v_b$) as nearly orthogonal directions, treating them as independent processes. We propose LLM-VA, which aligns $v_a$ with $v_b$ through closed-form weight updates, making the model's willingness to answer causally dependent on its safety assessment -- without fine-tuning or architectural changes. Our method identifies vectors at each layer using SVMs, selects safety-relevant layers, and iteratively aligns vectors via minimum-norm weight modifications. Experiments on 12 LLMs demonstrate that LLM-VA achieves 11.45% higher F1 than the best baseline while preserving 95.92% utility, and automatically adapts to each model's safety bias without manual tuning. Code and models are available at https://hotbento.github.io/LLM-VA-Web/.
Abstract:Adapter-based Federated Large Language Models (FedLLMs) are widely adopted to reduce the computational, storage, and communication overhead of full-parameter fine-tuning for web-scale applications while preserving user privacy. By freezing the backbone and training only compact low-rank adapters, these methods appear to limit gradient leakage and thwart existing Gradient Inversion Attacks (GIAs). Contrary to this assumption, we show that low-rank adapters create new, exploitable leakage channels. We propose the Unordered-word-bag-based Text Reconstruction (UTR) attack, a novel GIA tailored to the unique structure of adapter-based FedLLMs. UTR overcomes three core challenges: low-dimensional gradients, frozen backbones, and combinatorially large reconstruction spaces by: (i) inferring token presence from attention patterns in frozen layers, (ii) performing sentence-level inversion within the low-rank subspace of adapter gradients, and (iii) enforcing semantic coherence through constrained greedy decoding guided by language priors. Extensive experiments across diverse models (GPT2-Large, BERT, Qwen2.5-7B) and datasets (CoLA, SST-2, Rotten Tomatoes) demonstrate that UTR achieves near-perfect reconstruction accuracy (ROUGE-1/2 > 99), even with large batch size settings where prior GIAs fail completely. Our results reveal a fundamental tension between parameter efficiency and privacy in FedLLMs, challenging the prevailing belief that lightweight adaptation inherently enhances security. Our code and data are available at https://github.com/shwksnshwowk-wq/GIA.
Abstract:E-commerce Search Results Pages (SRPs) are evolving from linear lists to complex, non-linear layouts, rendering traditional position-biased ranking models insufficient. Moreover, existing optimization frameworks typically maximize short-term signals (e.g., clicks, same-day revenue) because long-term satisfaction metrics (e.g., expected two-week revenue) involve delayed feedback and challenging long-horizon credit attribution. To bridge these gaps, we propose a novel Whole-Page Experience Optimization Framework. Unlike traditional list-wise rankers, our approach explicitly models the interplay between item relevance, 2D positional layout, and visual elements. We use a causal framework to develop metrics for measuring long-term user satisfaction based on quasi-experimental data. We validate our approach through industry-scale A/B testing, where the model demonstrated a 1.86% improvement in brand relevance (our primary customer experience metric) while simultaneously achieving a statistically significant revenue uplift of +0.05%
Abstract:Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.
Abstract:The rise of AI agent frameworks has introduced agent skills, modular packages containing instructions and executable code that dynamically extend agent capabilities. While this architecture enables powerful customization, skills execute with implicit trust and minimal vetting, creating a significant yet uncharacterized attack surface. We conduct the first large-scale empirical security analysis of this emerging ecosystem, collecting 42,447 skills from two major marketplaces and systematically analyzing 31,132 using SkillScan, a multi-stage detection framework integrating static analysis with LLM-based semantic classification. Our findings reveal pervasive security risks: 26.1% of skills contain at least one vulnerability, spanning 14 distinct patterns across four categories: prompt injection, data exfiltration, privilege escalation, and supply chain risks. Data exfiltration (13.3%) and privilege escalation (11.8%) are most prevalent, while 5.2% of skills exhibit high-severity patterns strongly suggesting malicious intent. We find that skills bundling executable scripts are 2.12x more likely to contain vulnerabilities than instruction-only skills (OR=2.12, p<0.001). Our contributions include: (1) a grounded vulnerability taxonomy derived from 8,126 vulnerable skills, (2) a validated detection methodology achieving 86.7% precision and 82.5% recall, and (3) an open dataset and detection toolkit to support future research. These results demonstrate an urgent need for capability-based permission systems and mandatory security vetting before this attack vector is further exploited.
Abstract:CAPTCHAs are widely used by websites to block bots and spam by presenting challenges that are easy for humans but difficult for automated programs to solve. To improve accessibility, audio CAPTCHAs are designed to complement visual ones. However, the robustness of audio CAPTCHAs against advanced Large Audio Language Models (LALMs) and Automatic Speech Recognition (ASR) models remains unclear. In this paper, we introduce AI-CAPTCHA, a unified framework that offers (i) an evaluation framework, ACEval, which includes advanced LALM- and ASR-based solvers, and (ii) a novel audio CAPTCHA approach, IllusionAudio, leveraging audio illusions. Through extensive evaluations of seven widely deployed audio CAPTCHAs, we show that most existing methods can be solved with high success rates by advanced LALMs and ASR models, exposing critical security weaknesses. To address these vulnerabilities, we design a new audio CAPTCHA approach, IllusionAudio, which exploits perceptual illusion cues rooted in human auditory mechanisms. Extensive experiments demonstrate that our method defeats all tested LALM- and ASR-based attacks while achieving a 100% human pass rate, significantly outperforming existing audio CAPTCHA methods.